Taiwan-Japan University Presidents' Forum

JACUIE 2025Jul16

Challenges of Universities in Japan and Taiwan in the Innovative Era

10:30-10:35 Introduction 10:35-11:00 Keynote Speech 11:00-11:10 Q&A session

The last and largest opportunity for the revival of Japan's semiconductor

industry.

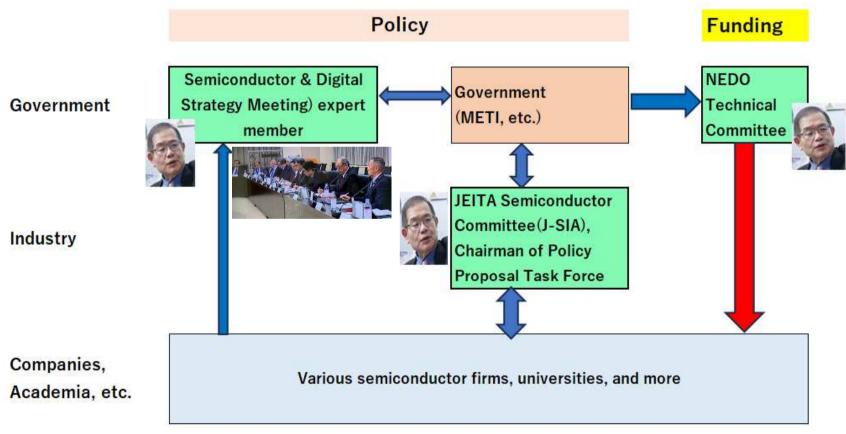
HIDEKI WAKABAYASHI

Distinguished Professor

Kumamoto University REISI

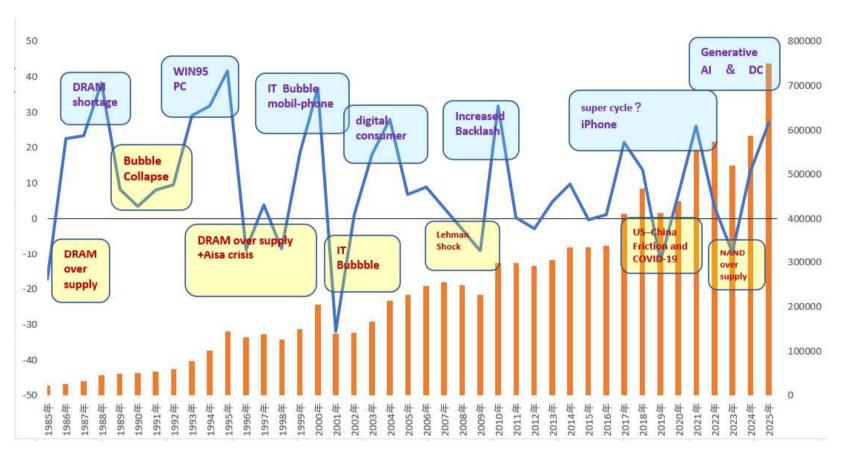
wakawaka@kumamoto-u.ac.jp

Semiconductor and Digital Industry Strategy Study Group Expert Members JEITA Semiconductor Committee Policy Proposal Task Force Chairman NEDO Technical Review Committee Member.

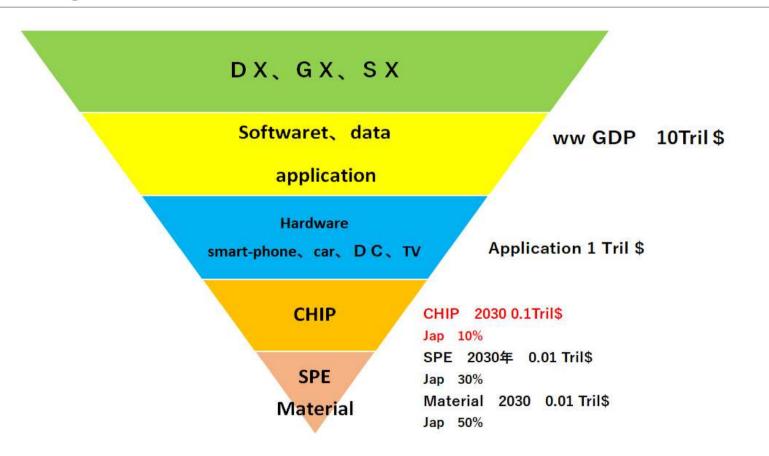

- •Securities Analyst and Fund Manager with over 10 years of Japanese equity Long/Short strategy, Research Analyst with over 20 years experiences include, through More than 20k visits and Interviews,
- Experiences of establish of Japanese equity division in JPMorgan Asia as MD, and co-establish of Hedge Fund Company.
- Has been Created New concepts "Management center of gravity" and "Natural period" and "Natural figure number", the concept of own volume scale has been built in Those two axes have been trying to be used for quantitative evaluation for management speed, area of business domain, and appropriateness for between diversity business and outside environment.
- •As Fund Manager, Performance of 10 years was 9.7%/y with sharp-ratio 0.93, Sortino-ratio 2.1
- As Securities analyst, "Nikkei and II ranking" in 10 years were 5-times No1 in Electronics/Semiconductor sector.

My Role and Involvement in Semiconductor Policy

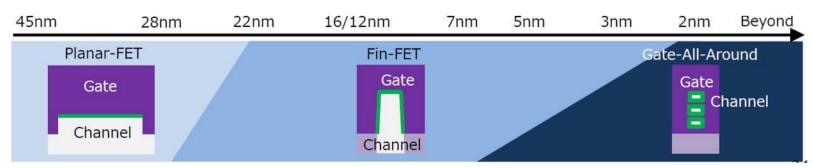
METI – Semiconductor and Digital Industry Strategy Review Meeting Over 20 regular members


NEDO Technical Committee member on the review board for the Post-5G Fund and GI Fund

JEITA Semiconductor Committee(J-SIA) Chairman of the Policy Proposal Task Force


Si-cycle

Semiconductors: 1985–2025, growing within the silicon cycle. From 2024, they will experience significant expansion driven by generative AI and data centers


Not all segments of the semiconductor industry have lost.

The weak ones are the advanced logic and fabless/foundry sectors that have failed to keep up, while sensors, NAND, analog, power, manufacturing equipment, and materials remain strong

METI Projects

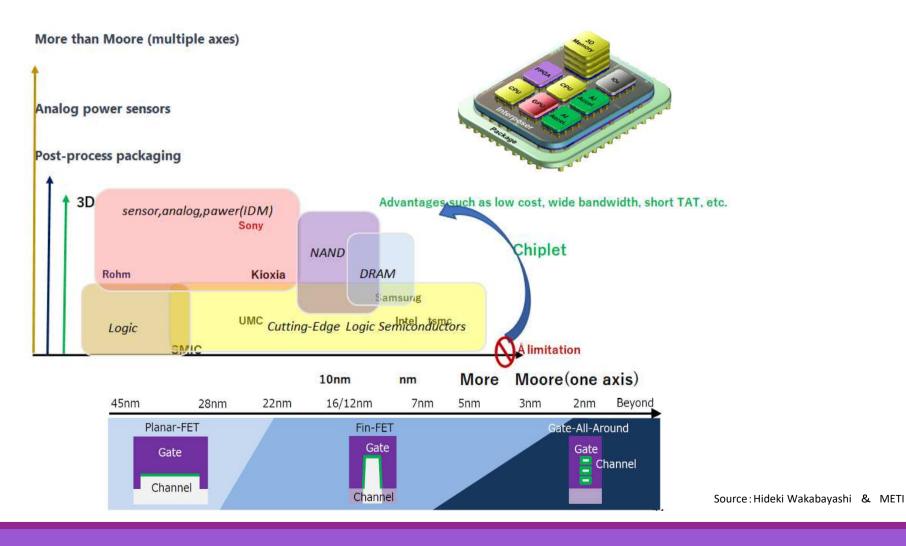
9	Step1	Step2	Step3		
Plan	Emergency reinforcement of semiconductor production base for IoT in 2020 (TSMC Kumamoto attraction)	Next-generation semiconductor technology base (Beyond 2nm) through Japan-US cooperation in 2025	Future technology base (optoelectronic fusion) through global cooperation in 2030		
Results	Attracting TSMC to Tsukuba、 Kumamoto(JASM)	Rapidus、LSTC (with IBM & IMEC)	_		
Other Results	Power semiconductor NEDO projects started	Strengthening semiconductor personne	_		
Evaluation	Excellent	Good			
Issues	EDA, chiple	ts, packaging, power se	miconductors.		

A final, yet greatest opportunity has arrived

Major Policy Shift: Learning from past mistakes, with an emphasis on continuity and responsible commitment

The difference from previous policies

Up until now	This time
Slow and small, a pie in the sky.	Fast and large, societal implementation - Step 1, Step 2, Step 3 - already with nearly one trillion yen from NEDO funds (Post-6G, GI).
Hinomaru only (Big electronics company)	International collaboration (TSMC, IBM, IMEC, etc.)
For the industry (a device manufacturer).	Users (insufficient supply chain disruptions), for the world (national security), devices, and materials too.
Only More Moore	More than Moore, as well packages, materials, SPEs, and design too.
METI and some top players	politics, agencies, international entities, academic, and mid-sized companies.

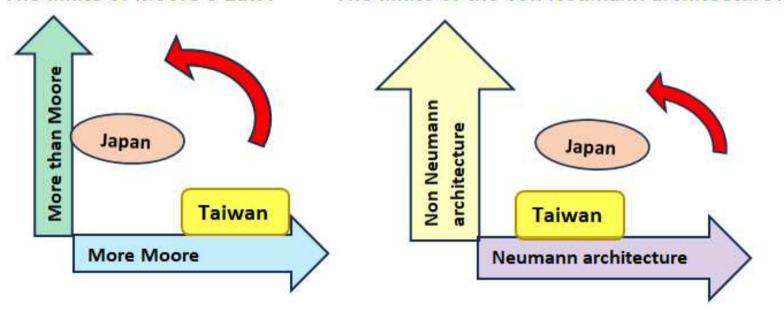

Theory of Digital Japan Archipelago Evolution

	Theory of Japan Archipelago Transformation	Theory of Digital japan Archipelago Evolution.
GDP	100 trillion yen (4th place), 1 million yen per capita (30th place), exchange rate fluctuated from 360 ¥ to 300 ¥	500 trillion yen (3rd place), 4 million yen per capita (20th place), exchange rate 100-110 ¥/\$
Population	110 million, labor force of 52 million, birth rate of 2.1, average life expectancy of 70 years old.	120 million, labor force of 60 million, birth rate of 1.2, average life expectancy of 85 years old.
Background	Excessive urban concentration and pollution.	Covid-19 pandemic, work style reform (telework)
Objectives	Industrial relocation, regional dispersion through transportation network.	Regional dispersion and DX through information and communication network.
Means	Shinkansen, highways, bridges.	Data centers, base stations + optical fiber network, EV stations, smart grid.
Industries	Iron, cement.	Semiconductors.


Technology is not just limited to fine processing on the "More Moore" axis!

There are multiple axes of diverse development, such as 3D (package + stacking) on the "More than Moore" axis.

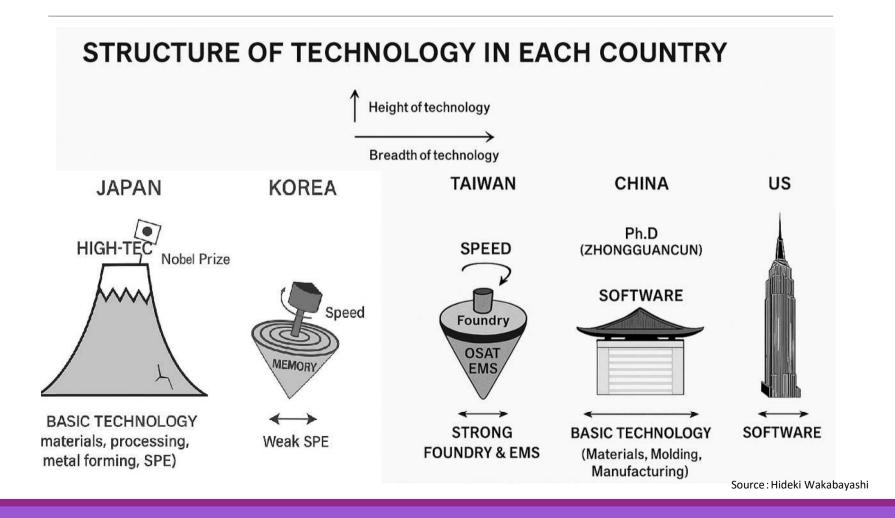
The long-standing von Neumann architecture is approaching its limits due to issues such as heat generation and the need for ever-increasing speed.


As a result, computing is shifting from a CPU-centric model to one centered around memory and sensors. Diverse non-von Neumann architectures—such as quantum computing and even brain-inspired models—are emerging and are likely to coexist in the future.

In terms of technological trends, Japan and Taiwan can complement each other.

Changes in Technology Trends

The limits of Moore's Law? The limits of the von Neumann architecture?


A Once-in-a-Half-Century Opportunity Meeting U.S. Expectations The world's industrial structure encompasses

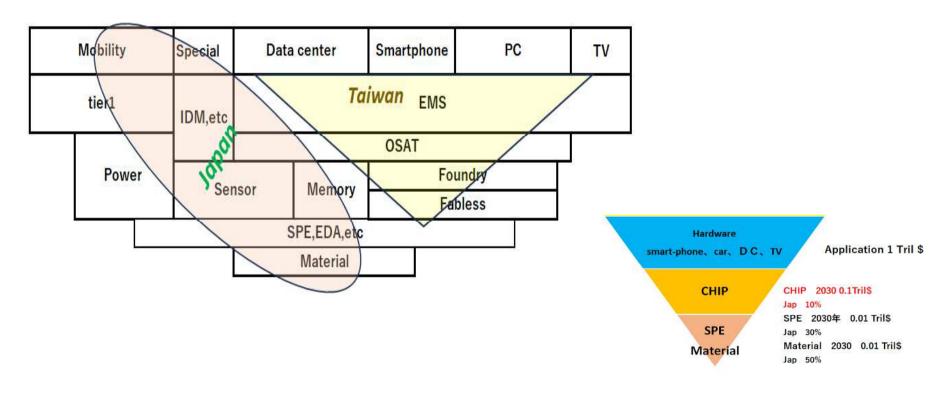
Within the Four-Layer Industrial Structure, U.S. Expectations and Responses

- 1980s: High expectations for Japan, followed by subsequent disappointment
- •After the 1990s: Japan's role was taken over by South Korea, Taiwan, and China
- *From 2020 onward: The United States may be disappointed in China

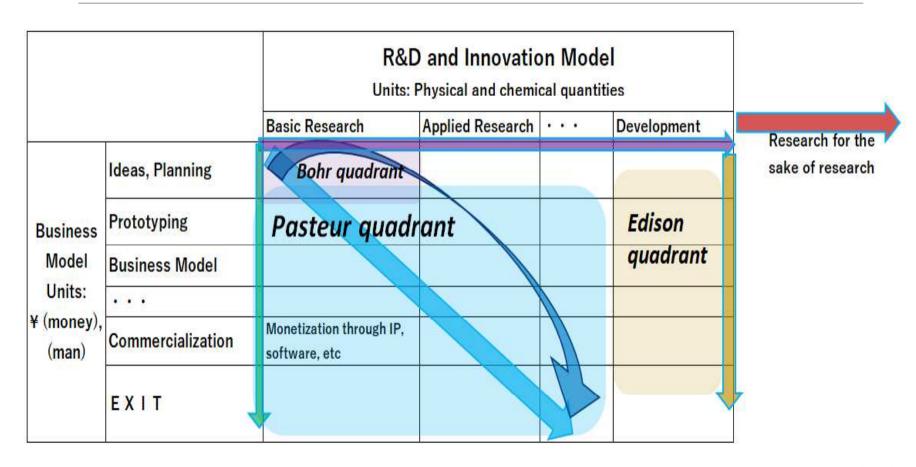
		80s	80s - 90s			2020-			
		U.S. Expectations of Japan	Japan-U.S. Friction	12.00000000		20- nina Policy	U.S. Expectations of Japan		
The Hierarchy of	Finance	US	US	US			US		
	Soft PF	US		US	- 3	nina US disappointment)	US		
	Science and Technology	US-Japan Cooperation	Japan (US disappointment)	US-Korea -Taiwan	П	oo uisappointment/	US-Japan-Taiwan		
	Manufacturing	Japan		China			Japan- <mark>Taiwan</mark>		

Comparison of Industrial Structures Across Countries

In the industrial technology hierarchy, the higher the layer, the more critical the business model becomes


— an area where Western countries and China hold significant advantages

Industrial structure of cutting-edge technologies

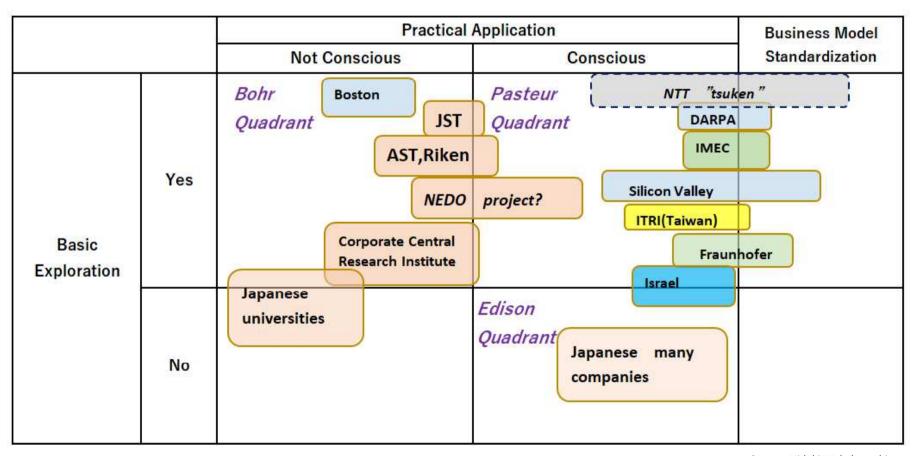

	Product			Smartphone、TV	etc	>	EV. Dro	one、white-go	oods			
	Technical system	A	l loT Bi	g Data		IOT 5G ADAS	ADA:	S EV Dron	e Robots			
	Classification	VR/AR	ΑI	Big Data	loT	⇔ 5G ⇔	ADAS	EV	Drone			
Business	Business model	1	1	1	1	1						
business	Арр	1	1	1	1	1		,				
	Computing	1	√	1	1	1	✓	√		US		China
Software	Network		√	√	1	1	✓	1	√		EU	
	Control, etc.		√				√	1	1			
	Processor (architecture)		1	√	1		√	1	√	Kore	a, Taiv	van
	Memory		√	√	i k		√	1			*** **********************************	
	Panel UI	1					√	1				
Device	Sensors (camera, antenna, sound, etc.)	1			√	1	√	1	1			
	Transmitter (light, radio wave, sound)				1	1	√	1	√	lane	v sa	
	Motor						1	1	1	Japo	III	
	Power, battery, power supply, etc.				√	√	√	1	√			
Manufacturing	Processing, micro/3D, etc.				√	√	√	1	√			
vianuracturing	Materials, creation/analysis, etc.				1	1	√	1	1			

From the perspective of industrial structure, Japan and Taiwan are well-positioned to coexist and complement each other.

Industrial structure

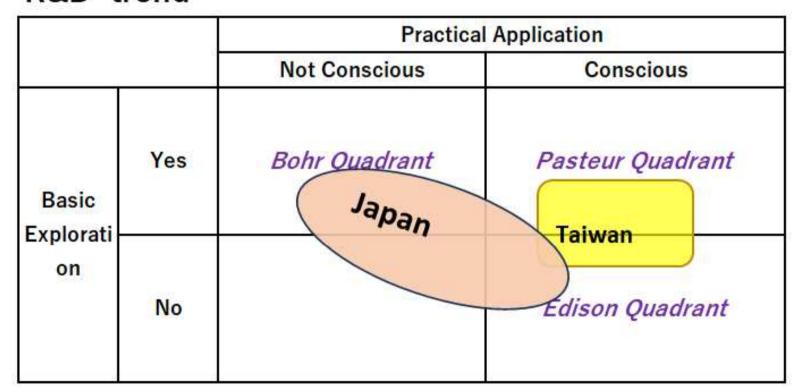
R&D/Innovation Model & Business Model

R&D 4 quadrants of Stokes

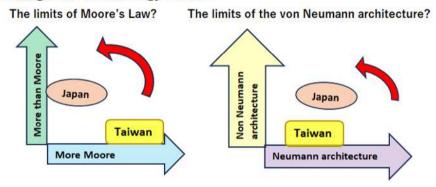

4 quadrants of Stokes

	Do not set purpose	Set purpose
Exploring the Principles	Bohr quadrant	Pasteur quadrant
Not exploring the principles		Edison quadrant

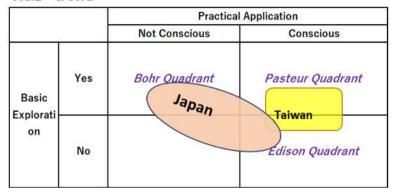
World and Japan 80's


	Do not set purpose	Set purpose			
Exploring the Principles	Univ.	DARPA, Fraunhofer, (NTT Public Corporation Lab.)			
Not exploring the principles		Corp. Lab.			

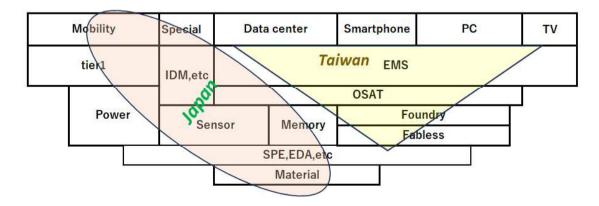
The Global Innovation Ecosystem and Stokes' Four Quadrants

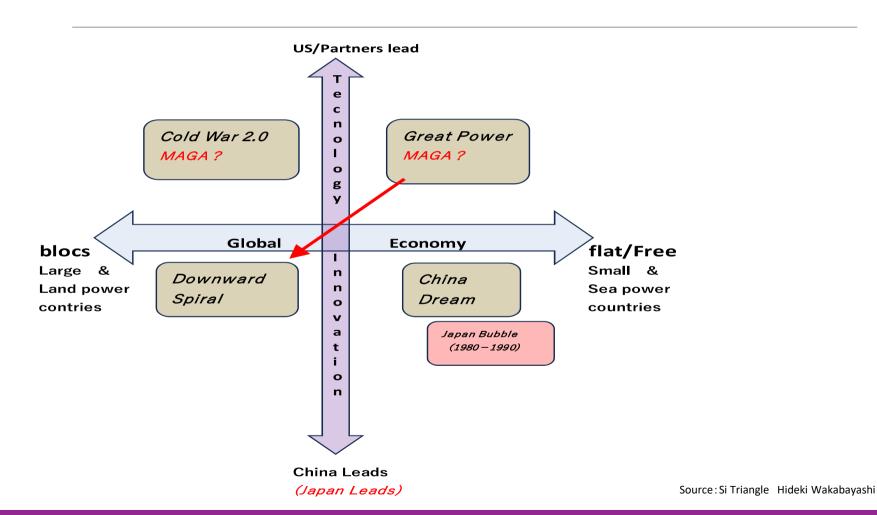

Japan and Taiwan also play complementary roles in their approaches to R&D and innovation.

R&D trend

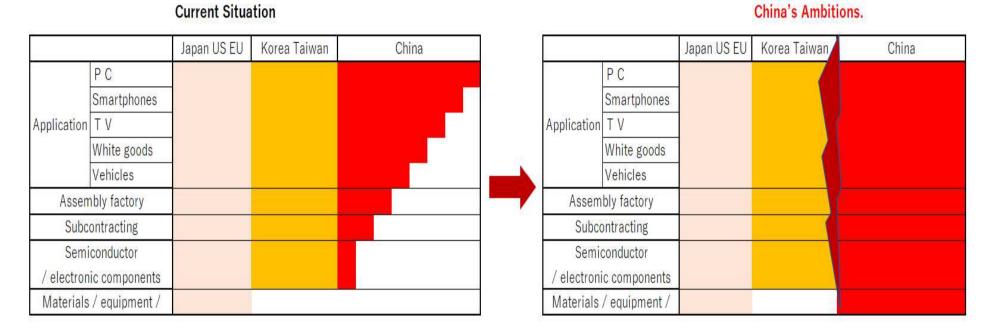


Japan and Taiwan are complementary in tech, R&D, and industry trends.


Changes in Technology Trends


R&D trend

Industrial structure



A four-quadrant scenario framework based on two axes within the Si-Triangle

Current Global Supply Chain Landscape and China's Ambitions

"Made in China 2025": A push for fully integrated, end-to-end manufacturing within China South Korea and Taiwan: Facing heightened geopolitical risks

Not only the potential for a Taiwan contingency but also the possibility of a strait blockade or "Hong Kong-ification.

"The world's fabless companies depend on TSMC; if that 100-trillion-yen market disappears, there could be prolonged shortages.

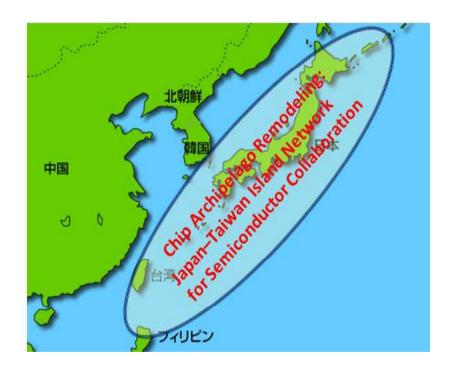
The global hegemony structure would also change

While the spotlight in the semiconductor industry is often on front-end wafer processes, back-end operations—particularly OSAT—remain underdiscussed, despite their critical importance in the supply chain.

In the complementary relationship between Japan and Taiwan, Japan has strengths in materials and equipment, while Taiwan leads in fabless design, foundries, OSAT, and EMS. They also complement each other in memory and DAO. However, neither country has a strong presence in EDA.

	EU	US	Jap	TW	korea	China
Mate <mark>r</mark> ial Material	0	0	0-	->		△?
SPE(Wafer process)	Δ	0	0-	-	Δ	△?
SPE(test assemble)	Δ	Δ	0.	-	<u></u>	
EDA		0		-		△?
IDM(Memory, DAO)	0	Δ	0	Δ	0	Δ
Fabless		0	Δ	0		0
Foundary		0	4	-0	Δ	Δ
OSAT/EMS		Δ	4	-0	-1	Δ

There is a pressing need to cultivate a next-generation EDA industry tailored to the demands of the chiplet era


Strong

O Mid

△ Weak

Shifting from a Japan-only digital archipelago strategy to a broader, semiconductor-driven open innovation and ecosystem model spanning the Pacific, with Japan and Taiwan at its core.

Evaluating regions geopolitically requires metrics like:

1 Geostrategic Value(Latitude and longitude)

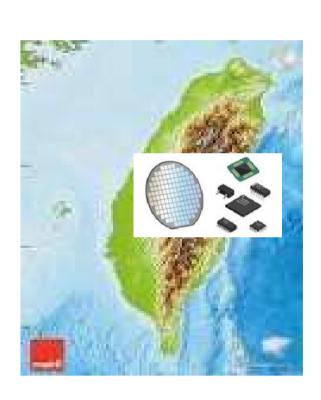
2 Land area

3 Access to rare resources

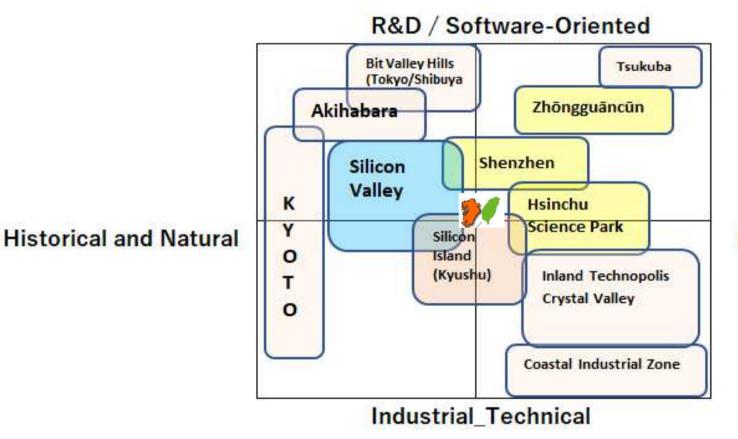
4 Technological industrial clusters (SEMI, DC)

5Economic ecosystems

	TW	Okinawa	KyuSyu	Honsyu +Sikoku	Hokkaido
Economic value	Mid	Low	Mid	High	Low
The value of technology SEMI, DC	High	Low	High	High	Low⇒High
The strategic value of rare resources	Low	Low	High	High	High
The value of a country's land area	Mid	Low	Mid	High	Mid
Geostrategic value	High	High	High	High	High


Rather than considering ecosystem models for Kyushu or Taiwan in isolation, we should first envision an integrated ecosystem between Kyushu and Taiwan.

	TW	Okinawa	KyuSyu
Economic value	Mid	Low	Mid
The value of technology SEMI, DC	High	Low	High
The strategic value of rare resources	Low	Low	High
The value of a country's land area	Mid	Low	Mid
Geostrategic value	High	High	High

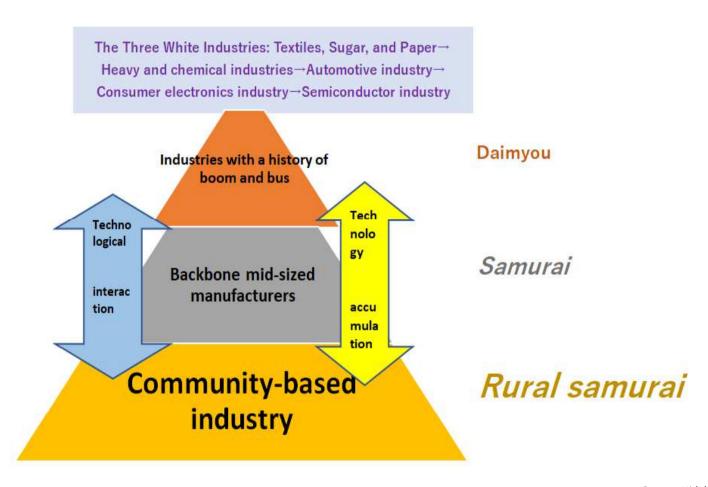

In the Heian period, it was Dazaifu; in the Edo period, Dejima; and today, as Silicon Island — Kyushu has always been globally connected

High-tech investment drives regional development: Cluster formation and ecosystem building.

Regional Development Patterns

Policy-Driven

Is becoming Silicon Valley possible?


		Stage		Cases							
Condition	Early	Growth	Maturity	Kumamoto	Tsukuba	Silicon Valley Kyoto	Akihabara Shenzhen	Bit Valley Hills			
Regional culture / Living infrastructure	0			0	Δ	0	0	0			
Specialized industry	0			0	8	0	0	0			
R&D / Universities	0			0	0	0	Δ				
Venture ecosystem		0	ľ	△?	Δ	0	0	0			
Government / Institutional support	0	0		0	0	0	Δ				
Vision / Narrative		0		0	Δ	0	0	0			
Cross-industry integration			0	0	6	0	0				
International recognition			0	0	0	0	0	0			
Diversity / Density / Local engagement			0	0		0	0				

Notes : Fully meets the condition / Clearly satisfied

 \triangle : Partially meets the condition / Emerging or developing

? : Uncertain / Insufficient information

Industries rise and fall, but resilient small and medium-sized enterprises persist — nurturing them is the key.

Built relationships with prominent leaders from Taiwan's academic and business communities.

伍自勇總經理(SiCADA, Synopsys)、顧鴻壽客座教授(陽明交通大學)、李鎮宜副校長(陽明交通大學)、若林秀樹教授 黑田 忠廣教授、陳志成(元)CPU總經理[董事長暨執行長室]、駱韋仲副所長(ITRI/電子與光電系統研究所)

High school students from a technical school in Tainan visited Japan and exchanged with students from Nobeoka Technical High School.

Lessons from Taiwan

- ·Digital / IT
- Resilience
- Global mindset
- Education (practicality, originality)
- Information sharing
- Simplicity with substance (especially among the wealthy)
- Empowerment of women
- The Japanese spirit that we are beginning to forget.

吾等當互相學習,有時為師,有時為弟,共同成長

Let us learn from one another — at times as teachers, at times as students — and grow together.

